DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR DIRECTIONAL COUPLERS, VSWR BRIDGES, COAXIAL CIRCULATORS, POWER SPLITTERS, AND POWER DIVIDERS (10 MHZ TO 40 GHZ) (GENERAL)

Headquarters, Department of the Army, Washington, DC 25 April 2006

Distribution Statement A: Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, US Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found of this the World back manual. For Wide Web. https://amcom2028.redstone.army.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		
		Test instrument identification	1	3
		Forms, records, and reports	2	3
		Calibration description	3	3
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	3
		Accessories required	5	3
	III.	CALIBRATION PROCESS FOR DIRECTIONAL COUPLERS		
		Preliminary instructions	6	5
		Definitions	7	6
		Equipment setup	8	6
		Coupling and directivity tests	9	7
		Final procedure	10	15

^{*}This bulletin supersedes TB 9-5985-314-35, dated 24 December 1996, including all changes.

			Paragraph	Page
	IV.	CALIBRATION PROCESS FOR VSWR		
		BRIDGES		
		Preliminary instructions	11	15
		Equipment setup	12	15
		Directivity	13	15
		Final procedure	14	18
SECTION	V.	CALIBRATION PROCESS FOR COAXIAL		
		CIRCULATORS		
		Preliminary instructions	15	18
		Definitions	16	18
		Equipment setup	17	18
		Insertion loss and isolation	18	19
		Final procedure	19	21
	VI.	CALIBRATION PROCESS FOR POWER SPLITTERS AND POWER DIVIDERS		
		Preliminary instructions	20	21
		Equipment setup	21	21
		Insertion loss and output port tracking	$\frac{21}{22}$	23
		Final procedure	23	31
APPENDIX	A.	DIRECTIONAL COUPLERS TEST		
ALLENDIA	А.	INSTRUMENT IDENTIFICATION		A-1
				71 1
APPENDIX	В.	VSWR BRIDGES TEST INSTRUMENT		
		IDENTIFICATION		B-1
APPENDIX	$\mathbf{C}.$	THREE PORT CIRCULATOR TEST		
		INSTRUMENT IDENTIFICATION		C-1
APPENDIX	D.	POWER SPLITTERS AND POWER		
	ъ.	DIVIDERS TEST INSTRUMENT		
		IDENTIFICATION		D-1
	_			
APPENDIX	Ε.	ALTERNATE CALIBRATION PROCESS FOR		
		DIRECTIONAL COUPLERS (10MHz to		Б.4
		18GHz)		E-1
APPENDIX	\mathbf{F} .	ALTERNATE CALIBRATION PROCESS FOR		
		VSWR BRIDGES (10MHz TO 18GHz)		F-1
APPENDIX	G.	ALTERNATE CALIBRATION PROCESS FOR		
		COAXIAL CIRCULATORS (10MHz TO		
		18GHz)		G-1
APPENDIX	H.	ALTERNATE CALIBRATION PROCESS FOR		
THE LIMBIA	11.	POWER SPLITTERS AND POWER		
		DIVIDERS (10MHz TO 18GHz)		H-1
		DIVIDE100 (10MHZ 10 10MHZ)		T1-T

SECTION I IDENTIFICATION AND DESCRIPTION

- 1. Test Instrument Identification. This bulletin provides instructions for the calibration of Directional Couplers, VSWR Bridges, Coaxial Circulators, Power Splitters, and Power Dividers (10 MHz to 40 GHz) (General). The manufacturers' manuals were used as the prime data sources in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
- **a. Model Variations**. Variations among models are described in Appendices A, B, C, and D.
- **b. Time and Technique.** The time required for this calibration is approximately 7 hours, using the microwave technique.

2. Forms, Records, and Reports

- **a.** Forms records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **b**. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
- **3. Calibration Description.** TI identification, including manufacturer, model number, parameters, and performance specifications which pertain to this calibration are listed in Appendices A, B, C, and D. TIs other than those listed in appendices may be certified with the techniques in this procedure if the manufacturers' manuals are available.

SECTION II EQUIPMENT REQUIREMENTS

- 4. Equipment Required. Table 1 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287 and Secondary Reference Calibration Standards Set NSN 4931-00-621-7878. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 1. The accuracies listed in table 1 provide a four-to-one ratio between the standard and TI.
- **5.** Accessories Required. The accessories required for this calibration are common usage accessories, issued as indicated in paragraph 4 above, and are not listed in this calibration procedure. The following peculiar accessories are also required for this calibration: N-short, Hewlett-Packard, Model 11512A (11512A) and U301 termination (18-40GHz).

Table 1. Minimum Specifications of Equipment Required

	Table 1. Minimum Specifications of Equipment Req	lunen
		Manufacturer and model
Common name	Minimum use specifications	(part number)
ATTENUATOR (FIXED)	Range: 30 dB	Weinschel, Models 9918-30dB
	Frequency range: 10 MHz to 18 GHz	and 9918-60dB
	Accuracy: ±1.0 dB	
	Range: 60 dB	
	Frequency range: 10 MHz to 18 GHz	
	Accuracy: ±1.5 dB	
FREQUENCY EXTENSION	Frequency range: 18.0 to 26.5 GHz	Weinschel, Model 1611)
KIT NO. 1	IF frequency: 700 MHz	(1011301101, 1120401 1011)
1111110.1	Combined accuracy with receiver system: ±0.03 dB/10 dB	
FREQUENCY EXTENSION	Frequency range: 26.5 to 40 GHz	Weinschel, Model 1612
KIT NO. 2	IF frequency: 1 GHz	Weinschei, Model 1612
KII NO. 2	* *	
MICHAROLI CELANDA DOC	Combined accuracy with receiver system: ±0.03 dB/10 dB	
MISMATCH STANDARDS	Frequency range: 0.01 to 18 GHz	D : 15:
	VSWR: 1.05 +.00,05 (0.01 to 4 GHz)	Premier Microwave 2334-001-1
	±.05 (4 to 18 GHz)	
	$1.2 \pm .10$	2334-001-2
	$1.50 \pm .17$	2334-001-3
	$2.00 \pm .22$	2334-001-4
	Frequency range: 18 to 26.5 GHz	
	1.105 ± 0.0035 ²	PRD Electronics 7913200-3-2
	1.5 ±0.0073 ²	Micro Lab 7913200-3-5
	Frequency range: 26.5 to 40 GHz	
	1.105 ± 0.004 2	PRD Electronics 7913200-4-2
	1.5 ±0.007 ²	Micro Lab 7913200-4-5
	1.0 ±0.001	
POWER METER	Frequency range: 10 MHz to 18 GHz	Hewlett-Packard, Model 437B
		(13440045) with power sensor,
	Power range: 0 to -70 dBm	Hewlett-Packard, Model 8482A
		(13440043), and power sensor,
	Accuracy: ±dB/10 dB	Hewlett-Packard, Model 8485D
		with 30 dB attenuator, Hewlett-
		Packard, Model 11708A
POWER SPLITTER	Frequency range: 10 MHz to 18 GHz	Weinschel, Model 1870A
	Insertion loss: -6 dB -0.2 +1.5 dB	(7916839)
	Output tracking between ports:	
	10 MHz to 2 GHz: ± 0.15 dB	
	2 to 8 GHz: ± 0.2 dB	
	8 to 18 GHz: ±0.25 dB	
RECEIVER SYSTEM	Frequency range: 10 MHz to 18 GHz	Weinschel, Model VM4A
	Attenuation range: 0.00 to 48 dB	
	Accuracy: ±0.02 dB/10 dB	
C C + + 1 C 11		•

See footnotes at end of table.

Table 1. Minimum Specifications of Equipment Required - Continued

	1. William openioacions of Equipm	Manufacturer and model
Common name	Minimum use specifications	(part number)
SIGNAL GENERATOR	Frequency range: 0.01 to 40 GHz 3	Wiltron/Anritsu, Model
NO. 1	Power output: +8 dBm, ±1dB	68369NV
	Flatness: 10 to 50 MHz: ±2 dB	
	.05 to 18 GHz: ±0.8 dB	
SIGNAL GENERATOR	Frequency range: 0.01 to 18 GHz	Wiltron/Anritsu, Model 68347M
NO. 2		
	Power output: +11 dBm, ±1dB	
	Flatness: 10 to 50 MHz: ±2 dB	
	27. 10.077	
	.05 to 18 GHz: ±0.8 dB	77 1 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TERMINATION 4	Frequency range: 8.2 to 12.4 GHz	Hewlett-Packard, Model X910B
	VSWR: 1.015 (max)	(X91OB)
	Impedance: 50 Ω	
	T 10.44 10.0H	
	Frequency range: 12.4 to 18 GHz	II 1 1 D 1 1 M 1 1 D0104
	VSWR: 1.02 (max)	Hewlett-Packard, Model P910A
	Impedance: 50 Ω	(P91OA)
	E 104 40 CH	Marrow Microscope Model 11201
	Frequency range: 18 to 40 GHz	Maury Microwave, Model U301 (U301)
	VSWR: ¹	(0301)
	Impedance: 50Ω	
	D	Maury Microwave, Model 2334-
	Frequency range: DC to 18 GHz	001-1
	VSWR: ¹	(2334-001-1)

¹As charted on calibration report provided by Primary Lab (for secondary reference only).

SECTION III CALIBRATION PROCESS FOR DIRECTIONAL COUPLERS

6. Preliminary Instructions

- a. The instructions outlined in paragraphs 6 through 8 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name as listed in table 1.

 $^{{}^2\!\}operatorname{Reflection} \operatorname{coefficient}.$

³Not calibrated above 18GHz.

⁴Select as required: Two each may be required.

- **c**. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Omit steps for parameters listed in Appendix A with the statement N/A.
- **7. Definitions.** Explanation of terms peculiar to directional couplers are listed in **a** through **d** below to ensure accurate interpretation of the measurement techniques used in this procedure.
- **a. Nominal Coupling**. The nominal loss between the primary input port and the auxiliary side arm port, with the output port terminated, is called coupling. Normally coupling is expressed in dB.
- **b.** Coupling Variation. The maximum average deviation from the coupling value resulting from manufacturing process, is called coupling variation and is normally expressed in dB.
- **c.** Frequency Sensitivity. The allowable deviation from the average coupling value (coupling variation), resulting from the frequency characteristics of a directional coupler, is called frequency sensitivity and is normally expressed in dB.
- **d. Directivity.** The difference between the coupling value (in dB) and the insertion loss (isolation) (in dB) measured between the output port and side arm port (reverse direction) with the input port terminated is called directivity and is expressed in dB.

8. Equipment Setup

- a. Use Appendix A to determine TI parameters as listed in (1) through (5) below:
 - (1) Frequency range.
 - (2) Coupling value.
 - (3) Coupling variation.
 - (4) Frequency sensitivity.
 - (5) Directivity.
- **b.** Select appropriate equipment setup for TI frequency range from figures as listed in (1) through (3) below:
 - (1) 10 MHz to 18 GHz, figure 1.
 - (2) 18 to 26.5 GHz, figure 2.
 - (3) 26.5 to 40 GHz, figure 3.
- **c.** Determine and record a minimum of 10 evenly spaced test frequencies over the TI entire frequency range.
- **d.** Connect equipment as shown in figures 1, 2, or 3 and allow 1 hour for equipment warm-up for figure 1 (3 hours for figures 2 and 3).

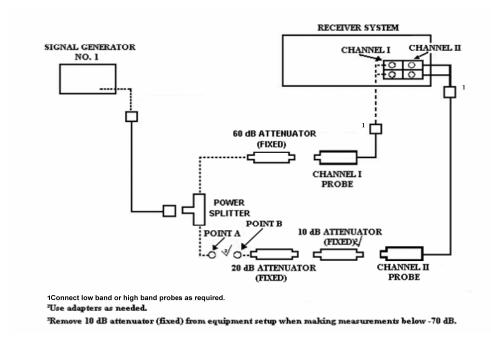


Figure 1. Equipment setup (10 MHz to 18 GHz).

9. Coupling and Directivity Tests

a. Performance Check

NOTE

Perform (1) through (8) below for TI test frequencies from 10 MHz to 18 GHz.

Perform (9) through (19) below for TI test frequencies from 18 to 26.5 GHz.

Perform (20) through (32) below for TI test frequencies from 26.5 to 40 GHz.

(1) Adjust signal generator No. 1 frequency controls to test frequency recorded in **8 c** above and adjust **RF OUTPUT** controls for +6 dBm.

NOTE

Use 15 percent search on receiver system.

Use adapters as needed.

NOTE

Use waveguide-to-coaxial adapters when TI is waveguide.

- (2) Connect POINT A to POINT B (fig. 1). Press receiver system frequency to test frequency recorded in $\bf 8~c$ above and establish a 0.00 dB reference.
 - (3) Connect TI into figure 1 equipment setup as listed in (a) through (d) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.
 - (c) **OUTPUT PORT** to 50Ω termination.
 - (d) AUX (TEST) SIDE ARM PORT (if any) to 50 Ω termination.

NOTE

Ensure receiver is in measurement mode.

- (4) Record receiver system indication. Receiver system indication will be within the nominal coupling value ±(coupling variation) + (±frequency sensitivity) tolerances listed for TI in Appendix A.
 - (5) Establish a 0.00 reference on receiver system.
 - (6) Connect TI into figure 1 equipment setup as listed in (a) through (d) below:
 - (a) **OUTPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.
 - (c) **INPUT PORT** to 50Ω termination.
 - (d) AUX (TEST) SIDEARM PORT (if any) to 50Ω termination.

NOTE

Ensure receiver system is in measurement mode.

- (7) Record receiver system indication. Receiver system indication will be greater than or equal to the value listed in TI directivity column, Appendix A.
- (8) Repeat technique of (1) through (7) above for remaining test frequencies recorded in 8 c above.

NOTE

Perform (9) through (19) below for TI test frequencies from 18 to 26.5 GHz.

Ensure equipment is connected as shown in figure 2 and has completed the 3 hour warm-up before proceeding to (9) below.

- (9) Adjust signal generator No.1 frequency controls to test frequency recorded in 8 c above and **RF OUTPUT** controls for +3 dBm.
- (10) Determine signal generator No. 2 frequency (LO) required for the desired measurement by calculating the following equation: LO = (RF-IF)/2 where:

RF = test frequency recorded in 8 c above IF = intermediate frequency at which receiver system is to perform measurement (0.700 GHz).

EXAMPLE:

Let IF = 0.700 GHz

RF = 18 GHz (test frequency $8 \text{ } \mathbf{c}$ above)

LO = signal generator frequency

LO = (RF-IF)/2

LO = (18 GHz - 0.700 GHz)/2 LO = 17.3 GHz/2

LO = 8.65 GHz

Signal generator No. 2 frequency for this measurement would be 8.65 GHz.

NOTE

Use receiver system in 15% SEARCH MODE.

- (11) Press receiver system frequency to 0.700 GHz.
- (12) Adjust signal generator frequency No. 2 to value determined in (10) above and **RF OUTPUT** to +8 dBm.
- (13) Connect POINT A to POINT B (fig. 2) and establish a $0.00~\mathrm{dBm}$ reference on receiver system.

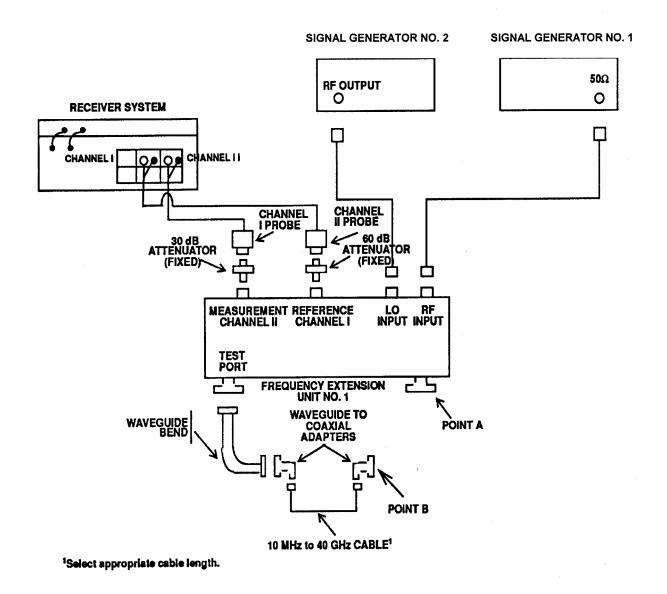


Figure 2. Equipment setup (18 to 26.5 GHz).

- (14) Connect TI into figure 2 equipment setup as listed in (a) through (d) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.
 - (c) **OUTPUT PORT** to 50Ω termination.
 - (d) AUX (TEST) SIDEARM PORT (if any) to 50Ω termination.

Ensure receiver system is in measurement mode.

- (15) Record receiver system indication. Receiver system indication will be within the nominal coupling ± (coupling variation) + (± frequency sensitivity) tolerances listed for TI in Appendix A.
 - (16) Establish a 0.00 dB reference on receiver system.
 - (17) Connect TI into figure 2 equipment setup as listed in (a) through (d) below:
 - (a) **OUTPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.
 - (c) **INPUT PORT** to 50Ω termination.
 - (d) AUX (TEST) SIDEARM PORT (if any) to 50Ω termination.

NOTE

Ensure receiver system is in measurement mode.

- (18) Record receiver system indication. Receiver system indication will be greater than or equal to the value listed for TI in directivity column, Appendix A.
- (19) Repeat technique of (9) through (18) above for remaining test frequencies recorded in 8 c above.

NOTE

Perform (20) through (32) below for TI with frequency range from 26.5 to 40 GHz.

(20) Determine signal generator No. 2 (RF) frequency required for the desired measurement by calculating the following equation: RF = test frequency in 8 c above/3.

EXAMPLE A:

If test frequency recorded in 8 c above is 27 GHz,

RF = 27 GHz/3

RF = 9 GHz

Signal generator No. 2 frequency would be adjusted to 9 GHz.

(21) Adjust signal generator No. 2 frequency controls to value determined in (20) above and adjust **RF OUTPUT** to +3 dBm.

(22) Determine signal generator No. 1 frequency (LO) required for the desired measurement by calculating the following equation: LO = ((3xRF)-IF)/2.

EXAMPLE B:

Where: RF = signal generator frequency No. 2 determined in (20) above.

IF = operating frequency of receiver system (1 GHz)

LO = Signal generator No. 1 frequency

LO = ((3xRF) - IF)/2

LO = ((3x9 GHz) - 1 GHz)/2

LO = 26 GHz/2

LO = 13 GHz

Signal generator No. 1 frequency would be adjusted to 13 GHz.

- (23) Adjust signal generator No.1 controls to frequency determined in (22) above and adjust **RF LEVEL** output to 0 dBm.
 - (24) Connect equipment as shown in figure 3.

NOTE

Ensure equipment is connected as shown in figure 3 and has completed the 3 hour warm-up before proceeding to (25) below.

NOTE

Use 15% SEARCH MODE on receiver system.

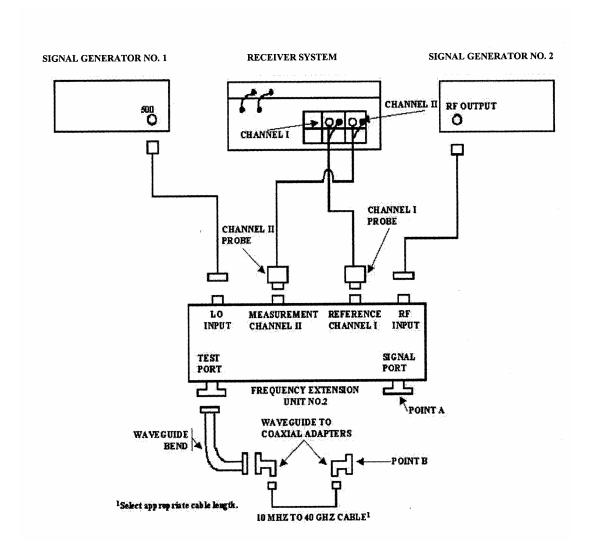


Figure 3. Equipment setup (26.5 to 40 GHz).

- (25) Press receiver frequency to 1 GHz.
- (26) Connect POINT A to POINT B (fig. 3) and establish a 0.00 dB reference on receiver system.
 - (27) Connect TI into figure 3 equipment setup as listed in (a) through (d) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.

- (c) **OUTPUT PORT** to 50Ω termination.
- (d) AUX (TEST) SIDEARM PORT (if any) to 50 Ω termination.

NOTE

Ensure receiver system is in measurement mode.

- (28) Record receiver system indication. Receiver system indication will be within the Nominal Coupling ± (Coupling Variation) ± (Frequency Sensitivity) tolerances listed for TI in Appendix A.
 - (29) Establish a 0.00 dB reference on receiver system.
 - (30) Connect TI as shown in figure 3 equipment setup as listed in (a) through (d) below:
 - (a) **OUTPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.
 - (c) **INPUT PORT** to 50Ω termination.
 - (d) AUX (TEST) SIDEARM PORT (if any) to 50Ω termination.

NOTE

Ensure receiver system is in measurement mode.

- (31) Record receiver system indication. Receiver system indication will be greater than or equal to the value listed for TI in directivity column, Appendix A.
- (32) Repeat technique of (20) through (31) above for remaining test frequencies recorded in 8 c above.
- **b. Adjustment.** No adjustments can be made; however, a correction chart may be prepared listing actual coupling and directivity values at test frequencies.

NOTE

When determining directivity, in- or out-of-tolerance condition, all of the below must be considered:

- 1. Termination mismatch errors can cause measured directivity to appear slightly lower than normal.
- 2. A 10 percent variation in directivity is acceptable for most directional couplers used in direct support of field activities in the U. S. Army.
- 3. A directional coupler may be out of tolerance at a specific frequency and still be useable over the rest of its range.

10. Final Procedure

- a. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

SECTION IV CALIBRATION PROCESS FOR VSWR BRIDGES

11. Preliminary Instructions

- a. The instructions outlined in paragraphs 11 and 12 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name as listed in table 1.
- **c**. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration.

12. Equipment Setup

a. Use Appendix B to determine TI parameters for directivity.

NOTE

Clean all connectors with alcohol before proceeding with ${\bf b}$ below.

b. Connect equipment as shown in figure 1 and allow 1 hour for equipment warm-up.

NOTE

Do not connect TI into equipment setup at this time.

c. Determine and record a minimum of 10 evenly spaced test frequencies over the TI entire frequency range.

13. Directivity

a. Performance Check

(1) Adjust signal generator No. 1 controls to test frequency recorded in **12 c** above and adjust **RF OUTPUT** controls for +6 dBm. Connect N-short to TI **DEVICE UNDER TEST** port.

(2) Connect TI as shown in figure 1 equipment setup. Press receiver system frequency to test frequency recorded in $12\ c$ above.

NOTE

Use 15% SEARCH MODE on receiver system.

(3) Establish a 0.0 dB reference on receiver system.

NOTE

Ensure receiver is in measurement mode.

- (4) Connect mismatches as listed in table 2 to TI **DEVICE UNDER TEST** port.
- (5) Record receiver system indication in table 3.
- (6) Repeat technique of (2) through (5) above for remaining test frequencies recorded in $\mathbf{12}\ \mathbf{c}$ above.

Table 2. Return Loss Measurements

				-0.0.00.0.0						
Mismatch ¹		Receiver system indications (return loss dB) ²								
		VSWR			4 to 8 GHz			12.4 Hz		.4 to 18 GHz
Model	Manufacturer	value	Min	Max	Min	Max	Min	Max	Min	Max
(2334-001-1)	Premier Microwave	1.05 +.00	32.26	40.00^{3}	26.44					40.00^{3}
		05		or						or
		±.05		greater						greater
(2334-001-2)	Premier Microwave	$1.20 \pm .10$	17.69							26.44
(2334-001-3)	Premier Microwave	$1.50 \pm .17$	12.01							16.98
(2334-001-4)	Premier Microwave	2.00 +.22	8.43							11.04

¹With test report provided by Primary Lab for Secondary Reference.

Table 3. Return Loss Measurements (with N-Short)

Test frequency	Mismatch 2334-001-1	Mismatch 2334-001-2	Mismatch 2334-001-3	Mismatch 2334-001-4

²Receiver system indications (return loss dB) include .02/10 dB.

³Standards limitations.

- (7) Adjust signal generator No. 1 controls to test frequency recorded in **12 c** above and adjust **RF OUTPUT** controls for +6 dBm. Leave TI **DEVICE UNDER TEST** port open.
- (8) Connect TI as shown in figure 1 equipment setup. Press receiver system frequency to test frequency recorded in **12 c** above.

(9) Establish a 0.0 dB reference on receiver system.

NOTE

Ensure receiver is in measurement mode.

- (10) Connect mismatches as listed in table 2 to TI DEVICE UNDER TEST port.
- (11) Record receiver system indication in table 4.

Test frequency 2334-001-1 Mismatch 2334-001-2 2334-001-3 2334-001-4

Table 4. Return Loss Measurements (without N-Short)

- (12) Repeat technique of (7) through (11) above for remaining test frequencies recorded in **12 c** above.
- (13) Add readings from table 3 and table 4 then divide by 2. Return loss in dB indication will be within the limits specified in table 2 (for secondary reference as stated in test report plus or minus specifications of SWR bridges).
 - **b.** Adjustments. No adjustments can be made.

14. Final Procedure

- a. Deenergize and disconnect all equipment and reinstall protective cover on TI.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

SECTION V CALIBRATION PROCESS FOR COAXIAL CIRCULATORS

15. Preliminary Instructions

- a. The instructions outlined in paragraphs 15 through 17 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name.
- **c**. Unless otherwise specified, verify the results of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration.
- **16. Definitions.** Explanation of terms peculiar to coaxial circulators is listed in **a** through **d** below to ensure accurate interpretation of the measurement techniques used in this procedure.
- **a. Isolation**. Electrical or acoustical separation between two locations is normally expressed in dB (a measurement against energy flow).
- **b.** Insertion loss. The difference between the power received at the load before and after the insertion of apparatus at some point in the line and normally expressed in dB (a measurement made with forward energy flow).
- **c.** Forward energy flow. The direction in which energy is allowed to pass through a device with very little RF loss.
- **d.** Reverse energy flow. The direction in which RF energy is opposed in passing through the device.

17. Equipment Setup

NOTE

Use Appendix C to determine TI parameters for isolation and insertion loss.

Clean all connectors with alcohol.

Connect equipment as shown in figure 1, and allow 1 hour for equipment warm-up.

NOTE

Do not connect TI into equipment setup at this time.

18. Insertion Loss and Isolation

a. Performance Check

(1) Adjust signal generator No. 1 frequency controls to 0.960 GHz and adjust $\bf RF$ OUTPUT controls for +6 dBm.

NOTE

Use 15% SEARCH MODE on receiver system.

- (2) Connect POINT A to POINT B (fig. 1) and establish a reference $0.00~\mathrm{dB}$ on receiver system at $0.960~\mathrm{GHz}$.
 - (3) Connect TI into figure 1 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **OUTPUT PORT** to POINT B.
 - (c) **SIDE PORT** to 50Ω termination.
 - (4) Receiver system indication will be 0.5 dB or less.
- (5) Adjust signal generator No. 1 and receiver system frequency controls to frequency settings listed in table 5. Receiver system indication will be 0.5 dB or less.

Table 5. Coaxial Circulator Frequencies

GHz
0.960
1.000
1.030
1.060
1.090
1.100

- (6) Repeat (1) and (2) above.
- (7) Connect TI into figure 1 equipment setup as listed in (a) through (c) below:
 - (a) **OUTPUT PORT** to POINT A.

- (b) **INPUT PORT** to POINT B.
- (c) SIDE PORT to 50Ω termination.
- (8) Receiver system indication will be 20 dB or greater.
- (9) Adjust signal generator No. 1 and receiver system frequency controls to frequency settings listed in table 5. Receiver system indication will be 20 dB or greater.
 - (10) Repeat (1) and (2) above.
 - (11) Connect TI into figure 1 equipment setup as listed in (a) through (c) below:
 - (a) **OUTPUT PORT** to POINT A.
 - (b) **SIDE PORT** to POINT B.
 - (c) **INPUT PORT** to 50 Ω termination.
 - (12) Receiver system indication will be 0.5 dB or less.
- (13) Adjust signal generator No. 1 and receiver system frequency controls to frequency settings listed in table 5. Receiver system indication will be 0.5 dB or less.
 - (14) Repeat (1) and (2) above.
 - (15) Connect TI into figure 1 equipment setup as listed in (a) through (c) below:
 - (a) **SIDE PORT** to POINT A.
 - (b) **OUTPUT PORT** to POINT B.
 - (c) **INPUT PORT** to 50Ω termination.
 - (16) Receiver system will indicate 20 dB or greater.
- (17) Adjust signal generator No. 1 and receiver system frequency controls to frequency settings listed in table 5. Receiver system indication will be 20 dB or greater.
 - (18) Repeat (1) and (2) above.
 - (19) Connect TI into figure 1 equipment setup as listed in (a) through (c) below:
 - (a) **SIDE PORT** to POINT A.
 - (b) **INPUT PORT** to POINT B.
 - (c) **OUTPUT PORT** to 50Ω termination.
 - (20) Receiver system indication will be 0.5 dB or less.

- (21) Adjust signal generator No. 1 and receiver system frequency controls to frequency settings listed in table 5. Receiver system indication will be 0.5 dB or less.
 - (22) Repeat (1) and (2) above.
 - (23) Connect TI as shown in figure 1, equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **SIDE PORT** to POINT B.
 - (c) **OUTPUT PORT** to 50Ω termination.
 - (24) Receiver system indication will be 20 dB or greater.
- (25) Adjust signal generator No. 1 and receiver system frequency controls to frequency settings listed in table 5. Receiver system indication will be 20 dB or greater.
 - **b.** Adjustments. No adjustments can be made.

19. Final Procedure

- a. Deenergize and disconnect all equipment and reinstall protective cover on TI.
- **b.** Annotate and affix DA label/form in accordance with TB 750-25.

SECTION VI CALIBRATION PROCESS FOR POWER SPLITTERS AND POWER DIVIDERS

20. Preliminary Instructions

- a. The instructions outlined in paragraphs 20 and 21 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name.
- **c**. Unless otherwise specified, verify the results of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration.

21. Equipment Setup

a. Use Appendix D to determine TI parameters for insertion loss and output tracking.

Clean all connectors with alcohol before proceeding with ${\bf b}$ below.

b. Connect equipment as shown in figure 4 for TIs with frequency range from 10 MHz to 18 GHz. Allow 1 hour for equipment warm-up.

NOTE

Equipment shown in figure 5 is for TIs with frequency range from 18 to 26.5 GHz. Allow 3 hours for equipment warm-up.

NOTE

Equipment shown in figure 6 is for TIs with frequency range from 26.5 to 40 GHz. Allow 3 hours for equipment warm-up.

NOTEDo not connect TI into equipment setup at this time.

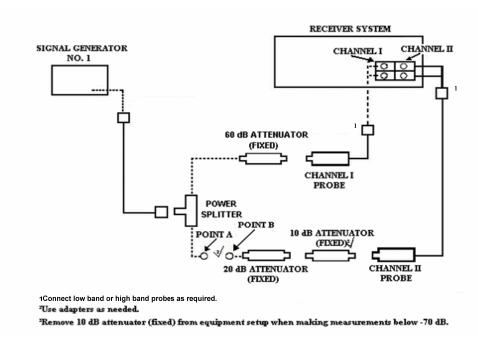


Figure 4. Power splitter measurement (10 MHz to 18 GHz) - equipment setup.

22. Insertion Loss and Output Port Tracking

a. Performance Check

NOTE

Perform 1 through 4 below for TIs with frequency range listed in Appendix D specifications.

- 1. 10 MHz to 1.9 GHz perform (1) through (11).
- 2. 2 to 18 GHz perform (12) through (22).
- 3. 18 to 26.5 GHz perform (23) through (35).
- 4. 26.5 to 40 GHz perform (36) through (48).
- (1) Connect equipment as shown in figure 4.
- (2) Adjust signal generator No. 1 frequency controls to 10 MHz and adjust **RF OUTPUT** controls for +6 dBm.

NOTE

Use 15% SEARCH MODE on receiver system.

- (3) Connect POINT A to POINT B (fig. 4) and establish a 0.00 dB reference on receiver system at 10 MHz.
 - (4) Connect TI into 4 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 2** to POINT B.
 - (c) **OUTPUT PORT 3** to 50 Ω termination.
- (5) Record receiver system indication in table 6 insertion loss for **OUTPUT PORT 2** column.
- (6) Adjust receiver system and signal generator No. 1 frequency controls to remaining test frequency settings listed in table 6. Record receiver system indication in insertion loss for **OUTPUT PORT 2** column in table 6. Insertion loss will be equal to or less than the limits listed in Appendix D.

Table 6. Insertion Loss - Output Port Tracking (10 MHz to 1.9 GHz)

		em indication	
	inserti		
	11150111	011 1000	
	OUTPUT	OUTPUT	OUTPUT
Test frequency	PORT 2	PORT 3	PORT
(GHz)	(dB)	(dB)	TRACKING
(/	(*)	(- /	(dB)
0.010			` ′
0.050			
0.100			
0.280			
0.460			
0.640			
0.820			
1.000			
1.180			
1.360			
1.540			
1.720			
1.900			

- (7) Disconnect TI from equipment setup and repeat (2) and (3) above.
- (8) Connect TI into figure 4 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 3** to POINT B.
 - (c) **OUTPUT PORT 2** to 50 Ω termination.
- (9) Record receiver system indication in table 4 insertion loss for **OUTPUT PORT 3** column.
- (10) Press receiver system and signal generator No. 1 frequency controls to remaining frequency settings listed in table 6. Record receiver system indication in insertion loss for **OUTPUT PORT 3** column in table 6. Insertion loss will be equal to dBm or less than the limits listed in Appendix D.
- (11) Algebraically calculate the difference between the values recorded for **OUTPUT PORT 2** and **OUTPUT PORT 3** in table 6. Record results in **OUTPUT PORT TRACKING** column in table 6. Output tracking will be within the limits specified in Appendix D.

NOTE

Perform (12) through (22) below for TI with frequency range from 2 to 18 GHz.

(12) Connect equipment as shown in figure 4.

(13) Adjust signal generator No. 1 frequency to 2.000 GHz and adjust **RF OUTPUT** controls for +6 dBm.

- (14) Connect POINT A to POINT B (fig. 4) and establish a 0.00 dB reference on receiver system at $2.000~\mathrm{GHz}$.
 - (15) Connect TI into figure 4 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 2** to POINT B.
 - (c) **OUTPUT PORT 3** to 50Ω termination.
 - (16) Record receiver system indication in OUTPUT PORT 2 column of table 7.
- (17) Adjust signal generator No. 1 and receiver system frequency controls to measure and record insertion loss for **OUTPUT PORT 2** for remaining frequencies listed in table 7. Insertion loss will be equal to or less than the limits listed in Appendix D.

Table 7. Insertion Loss - Output Port Tracking (2 to 18 GHz)

Tubic 11 II	Receiver system indication					
	inserti	OUTPUT				
Test	OUTPUT	OUTPUT	PORT			
frequency	PORT 2	PORT 3	TRACKING			
(GHz)	(dB)	(dB)	(dB)			
2.000	(*)	(* /	(- /			
2.500						
3.000						
3.500						
4.000						
4.500						
5.000						
5.500						
6.000						
6.500						
7.000						
7.500						
8.000						
8.500						
9.000						
9.500						
10.000						
10.500						
11.000						
11.500						
12.000						
12.500						
13.000						
13.500						
14.000						

Table 7. Insertion Loss - Output Port Tracking (2 to 18 GHz) Continued

	Receiver syst inserti	OUTPUT	
Test	OUTPUT	OUTPUT	PORT
frequency	PORT 2	PORT 3	TRACKING
(GHz)	(dB)	(dB)	(dB)
14.500			
15.000			
15.500			
16.000			
16.500			
17.000			
17.500			
18.000			

- (18) Disconnect TI from equipment setup and repeat (13) and (14) above.
- (19) Connect TI into figure 4 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 3** to POINT B.
 - (c) **OUTPUT PORT 2** to 50 Ω termination.
- (20) Record receiver system indication in OUTPUT PORT 3 column of table 7.
- (21) Adjust signal generator No. 1 and receiver system frequency controls to measure and record insertion loss for **OUTPUT PORT 3** for remaining frequencies listed in table 7. Insertion loss will be equal to or less than the limits listed in Appendix D.
- (22) Algebraically calculate the difference between the values recorded for **OUTPUT PORT 2** and **OUTPUT PORT 3** columns of table 7. Record difference in **OUTPUT PORT TRACKING** column in table 7. Output tracking will be within the limits specified in Appendix D.

NOTE

Perform (23) through (35) below for TI with frequency range from 18 to 26.5 GHz.

- (23) Connect equipment as shown in figure 5.
- (24) Adjust signal generator No. 1 frequency controls to 18000 MHz and adjust **RF OUTPUT** controls for +3 dBm.
- (25) Press signal generator No .2 frequency to 8650 MHz and adjust RF OUTPUT controls for +8 dBm.

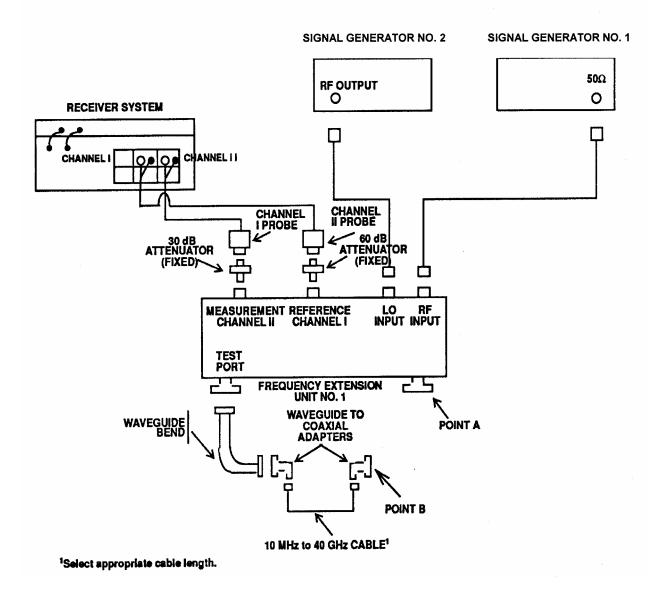


Figure 5. Power splitter measurement (18 to $26.5~\mathrm{GHz}$) - equipment setup.

$\begin{tabular}{ll} NOTE \\ Use 15\% SEARCH MODE on receiver system. \\ \end{tabular}$

- (26) Press receiver system frequency to 0.700 GHz.
- (27) Connect POINT A to POINT B (fig. 5) and establish a $0.00~\mathrm{dB}$ reference on receiver system.

- (28) Connect TI into figure 5 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 2** to POINT B.
 - (c) **OUTPUT PORT 3** to 50 Ω termination.
- (29) Record receiver system indication in OUTPUT PORT 2 column of table 8.
- (30) Adjust signal generator No. 1 and signal generator No. 2 frequency controls to remaining frequency settings listed in table 8. Measure and record insertion loss for **OUTPUT PORT 2** column in table 8. Insertion loss will be approximately equal to value listed in Appendix D.

Table 8. Insertion Loss - Output Port Tracking (18 to 26.5 GHz)

		Receiver syst	OUTPUT	
Programmable	Signal	OUTPUT	OUTPUT	PORT
sweep generator	generator	PORT 2	PORT 3	TRACKING
(GHz)	(MHz)	(dB)	(dB)	(dB)
18.000	8650			
18.500	8900			
19.000	9150			
19.500	9400			
20.000	9650			
20.500	9900			
21.000	10,150			
21.500	10,400			
22.000	10,650			
22.500	10,900			
23.000	11,150			
23.500	11,400			
24.000	11,650			
24.500	11,900			
25.000	12,150			
25.500	12,400			
26.000	12,650			
26.500	12,900	· · · · · · · · · · · · · · · · · · ·		

- (31) Repeat (24), (25), and (27) above.
- (32) Connect TI into figure 5 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 3** to POINT B.
 - (c) **OUTPUT PORT 2** to 50 Ω termination.

- (33) Record receiver system indication in OUTPUT PORT 3 column of table 8.
- (34) Adjust signal generator No. 1 and signal generator No. 2 frequency controls to remaining settings listed in table 8. Measure and record insertion loss for **OUTPUT PORT 3** in table 8. Insertion loss will be approximately equal to value listed in Appendix D.
- (35) Algebraically calculate the difference between the values recorded in table 8 for **OUTPUT PORT 2** and **OUTPUT PORT 3**. Record difference in **OUTPUT PORT TRACKING** column of table 8. Output tracking will be within the limits specified listed in Appendix D.

Perform (36) through (48) below for TI with frequency range from 26.5 to 40 GHz.

(36) Connect equipment as shown in figure 6.

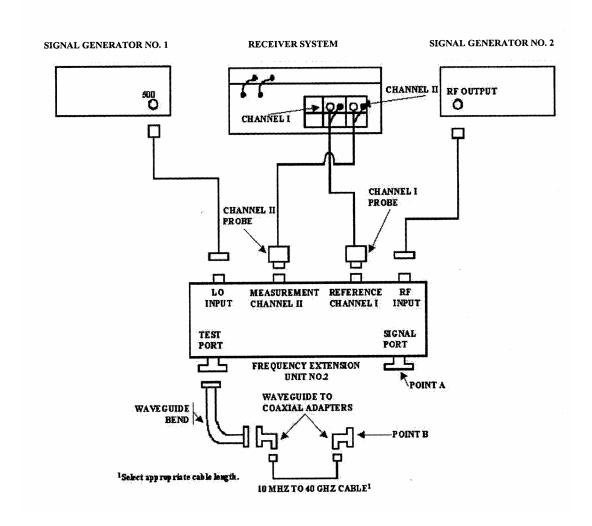


Figure 6. Power splitter measurement (26.5 to 40 GHz) - equipment setup

- (37) Adjust signal generator No. 1 frequency controls to 13.0 GHz **RF OUTPUT** controls for 0 dBm.
- (38) Adjust signal generator No. 2 frequency controls to 9000 MHz and **RF OUTPUT** controls for +3 dBm.

NOTE Use 15% SEARCH MODE on receiver system.

- (39) Press receiver system frequency to 1.000 GHz.
- (40) Connect POINT A to POINT B (fig. 6) and establish a 0.00 dB reference on receiver system.
 - (41) Connect TI into figure 6 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 2** to POINT B.
 - (c) **OUTPUT PORT 3** to 50 Ω termination.
 - (42) Record receiver system indication in OUTPUT PORT 2 column of table 9.
- (43) Set signal generator No. 1 and signal generator No. 2 frequency controls to remaining settings listed in table 9. Measure and record insertion loss for **OUTPUT PORT** 2 column in table 9.

Table 9. Insertion Loss - Output Port Tracking (26.5 to 40 GHz)

•			O stop sto I of o II stolling	0 (,	
	Programmable	Signal	Receiver system indication		
Actual test	sweep generator	generator		ion loss	OUTPUT PORT
frequency	(LO)	(RF)	OUTPUT PORT 2	OUTPUT PORT 3	TRACKING
(GHz)	(GHz)	(MHz)	(dB)	(dB)	(dB)
27.0	13.0	9000			
28.0	13.5	9333			
29.0	14.0	9667			
30.0	14.5	10,000			
31.0	15.0	10,333			
32.0	15.5	10,667			
33.0	16.0	11,000			
34.0	16.5	11,333			
35.0	17.0	11,667			
36.0	17.5	12,000			
37.0	18.0	12,333			
38.0	18.5	12,667			
39.0	19.0	13,000			
40.0	19.5	13,333			

⁽⁴⁴⁾ Repeat (37) through (40) above.

- (45) Connect TI into figure 6 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 3** to POINT B.
 - (c) **OUTPUT PORT 2** to 50 Ω termination.
- (46) Record receiver system indication in **OUTPUT PORT 3** column of table 9.
- (47) Adjust signal generator No. 1 and signal generator No. 2 frequency controls to remaining settings listed in table 9. Measure and record insertion loss for **OUTPUT PORT 3** in table 9.
- (48) Algebraically calculate the difference between the values recorded in table 9 for **OUTPUT PORT 2** and **OUTPUT PORT 3**. Record difference in **OUTPUT PORT TRACKING** column of table 9. Output port tracking will be within the limits specified in Appendix D.
- **b.** Adjustments. Prepare charts (if required) similar to tables 7, 8, and 9 for TI frequency range.

23. Final Procedure

- a. Deenergize and disconnect all equipment and reinstall protective cover on TI.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

APPENDIX A DIRECTIONAL COUPLERS TEST INSTRUMENT IDENTIFICATION

TEST INSTRUMENT IDENTIFICATION						
		Frequency	Nominal	Coupling	Frequency	
Model/part	3.5	range	coupling	variation	sensitivity	Directivity
number	Manufacturer	(GHz)	(dB) 12	(dB) 12	(dB) 12	$(dB)^1$
A414-10-FS1	PRD Electronic	26.5 to 40.0	1 0	±0.4 ³	±0.5	40
CA-1 5N	MICROLAB/FXR	0.20 to 0.40	3(+0.2-0.0)		±0.5	25
C901 E	Wavecom	3.7 to 8.3	10	±0.3	N/A	37
DBH-675-10	Systron	7.05 to 10.0	10(±0.4)	±0.5	N/A	40
H752A	Hewlett-Packard	7.05 to 10.0	3	±0.5	N/A	40
H752C	Hewlett-Packard	7.05 to 10.0	10	<u>+</u> 0.5	N/A	40
H752D	Hewlett-Packard	7.05 to 10.0	20	±0.5	N/A	40
K414-10-FSl	PRD Electronic	18.0 to 26.5	10	±0.4	<u>+</u> 0.5	40
K752C	Hewlett-Packard	18.0 to 26.5	10	±0.5	N/A	40
L901 E	Wavecom	0.9 to 2.2	10	±0.5	N/A	45
MIS-10409-21	Military	Same as L901 E				
MIS-10409-31	Military	Same as S901 E				
M1537014-012	Military	Same as K414-10-FS1				
P7520	Hewlett-Packard	12.4 to 18.0	10	±0.5	N/A	40
P752D	Hewlett-Packard	12.4 to 18.0	20	±0.5	N/A	40
P901	Wavecom	0.5 to 1.0	10	N/A	N/A	48
R752C	Hewlett-Packard	26.5 to 40.0	10	±0.6	N/A	40
S901 E	Wavecom	1.7 to 4.2	10	N/A	N/A	42
U901	Wavecom	0.1 to 0.5	10	±0.5	N/A	48
X752A	Hewlett-Packard	8.2 to 12.4	3(±0.4)	±0.5	N/A	40
X752C	Hewlett-Packard	8.2 to 12.4	10(±0.4)	±0.5	N/A	40
X752D	Hewlett-Packard	8.2 to 12.4	20 (±0.4)	±0.5	N/A	40
X901	Wavecom	7.0 to 12.4	10	±0.3	N/A	33
1070-10	Narda	8.2 to 12.4	10 ±0.2	±0.4	±0.5	40
11691 D OPT001	Hewlett-Packard	2.0 to 18.0	22	±1.0	N/A	30 (2.0 to 8 GHz) 26(8 to 18 GHz) 24 (w/N- type connector)
11692D	Hewlett-Packard	2.0 to 18.0	22	±1.0	N/A	Same as 11691D and 24 test port (w/N-type connector)
3000-10	Narda	0.225 to 0.46	10±(0.1)4	±1.0	N/A	30
3000-20	Narda	0.225 to 0.46	20 (±0.1) ^{4 5}	±1.0	N/A	30
3000-30	Narda	0.225 to 0.46	30 (±0.1) ^{4 5}	±1.0	N/A	30
3001-10	Narda	0.46 to 0.95	10 (±0.1) ⁴	±1.0	N/A	30
3001-20	Narda	0.46 to 0.95	20 (±0.1) ^{4 5}	±1.0	N/A	30
3002-10	Narda	0.95 to 2.0	10 (±0.1) ⁴	±1.0	N/A	30
3002-20	Narda	0.95 to 2.0	20 (±0.1) ^{4 5}	±1.0	N/A	30
3002-30	Narda	0.95 to 2.0	30 (±0.1) 45	±1.0	N/A	30

See footnotes at end of table.

APPENDIX A DIRECTIONAL COUPLERS TEST INSTRUMENT IDENTIFICATION - CONTINUED

		Frequency	Nominal	Coupling	Frequency	
Model/part		range	coupling	variation	sensitivity	Directivity
number	Manufacturer	(GHz)	(dB) 12	(dB) 1 2	(dB) 1 2	$(dB)^1$
3003-10	Narda	2.0 to 4.0	10 (±0.1) ⁴	±1.0	N/A	25
3003-20	Narda	2.0 to 4.0	20 (± 0.1) ^{4 5}	±1.0	N/A	27
3004-10	Narda	4.0 to 10.0	10 (±0.4) ⁴	N/A	±1.2	20 (4 to 8 GHz)
						17 (8 to 10 GHz)
3004-20	Narda	4.0 to 10.0	20 (±0.4) ^{4 5}	N/A	± 1.2	20 (4 to 8 GHz)
						17 (8 to 10 GHz)
3020A	Narda	0.05 to 1.0	20 to 33	N/A		
			(0.05 to 0.25 GHz)			
			(±0.1) ⁵	/	27/4	
		0.25 to 1.0	20 (0.25 to 1.0 GHz)	±1.0 (0.25	N/A	35
				to 1.0		
2000	NT 1.	1.4.4	00 (10 1)45	GHz)	N/A	1 to 3 GHz 30
3022	Narda	1 to 4	20 (±0.1) ^{4 5}	±1.0	N/A	3 to 4 GHz 27
3024	Narda	4.0 to 8.0	20 (±0.1) ^{4 5}	±1.0	N/A	25
3039-20	Narda	0.125 to 0.25	20 (±0.1) ^{4 5}	±0.5	±0.2	20
3043B-10	Narda	1.7 to 4.2	10 (±0.1) ⁴	±0.5	±0.2	20
3043B-10 3043B-20	Narda	1.7 to 4.2	20 (±0.1) ^{4 5}	±0.5	±0.2	20
3044B-20	Narda	3.7 to 8.3	20 (±0.1) ^{4 5}	±0.5	±0.2	17
3044B-20 3045C-10	Narda	7.0 to 12.4	10 (±0.1) ⁴	±0.5	±0.2	15
3045C-20	Narda	7.0 to 12.4	20 (±0.1) 4 5	±0.5	±0.2	15
3045C-30	Narda	7.0 to 12.4	30 (±0.1) ^{4 5}	±0.5	±0.2	15
3060-20	Narda	10 to 200 MHz ⁶	20 (±0.2) ^{4 5}	±0.8	±0.5	20
3092	Narda	0.95 to 2.2	10 (±0.1) ⁴	N/A	±1.2	45
3093	Narda	1.7 to 4.2	10 (±0.1) ⁴	N/A N/A	±1.2	42
3094	Narda	3.7 to 8.3	10 (±0.1) 4	N/A	±1.2	37
30953	Narda	7.0 to 12.4	10 (±0.1) 4	N/A	±1.2	33
4002B-10	Narda	0.125 to 0.25	10 (±0.1) 10 (±1.25)	N/A	±0.75	25
40852	PRD Electronic	8.2 to 12.4	10 (±1.23)	3	+0.6	40
40854	PRD Electronic	8.2 to 12.4	20	±0.4	±0.5	40
413S1	PRD Electronic	12.4 to 18.0	10	±0.4	±0.5	40
430-10S1	PRD Electronic	0.2 to 1.0	10	±1.0	±0.3	20
431-10Sl	PRD Electronic	0.95 to 2.0	10	±1.0	±0.2	15
432-10S1	PRD Electronic	2.0 to 4.0	10	±1.0	±0.2	15
432-10S1 432-20S2	PRD Electronic	2.0 to 4.0	20	±0.5	±0.2 ±1.0	25
432-2052 433-10S1	PRD Electronic	4.0 to 8.0	10	±1.0	±0.2	15
433-10S2	PRD Electronic	4.0 to 8.0	10	±0.5	±1.0	20
434-10S1	PRD Electronic	7.0 to 11.0	10	±1.0	±0.2	15
60543	Waveline	8.2 to 12.4	10	±0.4	±0.5	40
674-40	Waveline	8.2 to 12.4	40(±0.3)	±0.4	N/A	40
C C / /	wavenne	0.2 00 12.1	10(±0.0)	-0.0	11/11	10

See footnotes at end of table.

APPENDIX A DIRECTIONAL COUPLERS TEST INSTRUMENT IDENTIFICATION - CONTINUED

		Frequency	Nominal	Coupling	Frequency	
Model/part		range	coupling	variation	sensitivity	Directivity
number	Manufacturer	(GHz)	(dB) 1 2	(dB) 1 2	(dB) 1 2	$(dB)^1$
774-30	Waveline	12.4 to 18.0	30(±0.3)	±0.5	N/A	40
774-40	Waveline	12.4 to 18.0	40(±0.3)	±0.5	N/A	40
776D	Hewlett-Packard	0.94 to 1.9	20	±1.0	N/A	40
778D	Hewlett-Packard	0.1 to 2.0	20 7	±1.5 8	±1.0	36 (0.1 to 1.0 GHz)
						32 (1 to 2 GHz)
						30 (0.1 to 2 GHz,
						B port)
7913359-2-2	Military	8.2 to 12.4	10	±0.4	± 0.5	40
797D	Hewlett-Packard	1.9 to 4.1	$20(\pm 0.5)$	±0.2	N/A	26
7923152	Military	Same as				
		K414-40-FS1				
7923153	Military	Same as				
		A414-10-FSl				
874-40	Waveline	18.0 to 26.5	40 (±0.3)	±0.5	N/A	40

¹See paragraph 7 for definitions.

 $^{^2}$ Nominal coupling tolerances are the linear combination of coupling variation and frequency sensitivity nominal coupling tolerance (\pm (coupling variation) + (\pm (frequency sensitivity). Example: Hewlett-Packard, Model 776D - 20 (nominal coupling) = $20 \pm 1 \, dB$ over TI's frequency range.

³Provide correction chart of receiver system actual indications.

 $^{^4}$ Absolute calibration accuracy for manufacturer selected frequencies stamped on data plate of TI.

 $^{^5\}mathrm{Per}~10~\mathrm{dB}$ step.

 $^{^{6}}$ Use test frequencies of: 10, 30, 60, 100, 150, and 200 MHz.

 $^{^{7}}$ Decreasing frequency from 0.45 to 0.1 GHz has an increasing slope of 0.006 dB/MHz. Example: nominal coupling (dB) at 0.1 GHz is 22.1.

 $^{^8\!\}mathrm{Above}$ 0.45 GHz.

APPENDIX B VSWR BRIDGES

TEST INSTRUMENT IDENTIFICATION

Model/part number	Manufacturer	Frequency range (GHz)	Directivity (dB)
60NF50	Wiltron	5 MHz to 2 GHz ¹	40
87A50-1	Wiltron	2 to 18 GHz	38^{2}

 $^{^{1}}$ Not calibrated below 10 MHz.

 $^{^2\,\}mathrm{For}$ model number 87A50-1/SC3522 Directivity is specified at 36 dB.

APPENDIX C THREE PORT CIRCULATOR TEST INSTRUMENT IDENTIFICATION

Model/part		Frequency	Isolation	Insertion	
number	Manufacturer	range (GHz)	(dB min)	loss (dB max)	
DF 2407	Ditcom Microwave	Same as M3B-1030			
M3B-1030	Omnispectra	0.960 to 1.100	20	0.5	
7916840	Same as M3B-1030				

APPENDIX D POWER SPLITTERS AND POWER DIVIDERS TEST INSTRUMENT IDENTIFICATION

Model/part		Freq	uency	range	Insertion loss	OUTPUT PORT
number	Manufacturer		(GHz)	1	(dB nom)	TRACKING (dB) ²
$K241 ()^3$	Wiltron	Dc	to	40		
		Dc	to	6	7.0	±0.3
		6	to	18	7.5	±0.3
		18	to	26.5	8.0	±0.6
		26.5	to	40	8.5	±0.6
PS018	Weinschel	Dc	to	4	6^{4}	<u><</u> 0.15
		4	to	8		<u><</u> 0.20
		8	to	18		<u><</u> 0.25
1506A	Weinschel	Dc	to	18	6 dB, -0.2, +1.2 dB	
		Dc	to	4	max to 10.0 GHz;	±0.2
		4	to	10	+1.5 dB max to	±0.4
		10	to	18	18.0 GHz	±0.5
$1870A^{3}$	Weinschel	Dc	to	18	6 dB +1.5	
		Dc	to	8		±0.15
		8	to	18		±0.2
11667A	Hewlett-Packard	Dc	to	4	64	<u><</u> 0.15
		4	to	8		<u>≤</u> 0.20
		8	to	18		<u><</u> 0.25
11667B ³	Hewlett-Packard	Dc	to	26.5	6^{4}	
		Dc	to	18		<u><</u> 0.25
		18	to	26.5]	<u>≤</u> 0.40

¹Not checked below 10 MHz.

 $^{^2\}mathrm{Between}$ output ports.

 $^{^3}$ Attach test report for the frequencies requested or required by customer.

 $^{^4}$ Value determined in calibration process.

APPENDIX E ALTERNATE CALIBRATION PROCESS FOR DIRECTIONAL COUPLERS (10MHZ TO 18GHZ)

NOTE

Software package USATA PD-MAT () can be used in place of steps 1 a (1) through 1 a (35) below, verifying that the TI meets or exceeds accuracies listed in Appendix A. Copies of the software package are available from Commander, U. S. Army Aviation and Missile Life Cycle Management Command, ATTN: AMSAM-TMD-LW, Redstone Arsenal, AL 35898-5000 or on the USATA homepage.

1. Alternate Calibration Process for Directional Couplers (10 MHz to 18 GHz)

a. Performance Check

NOTE

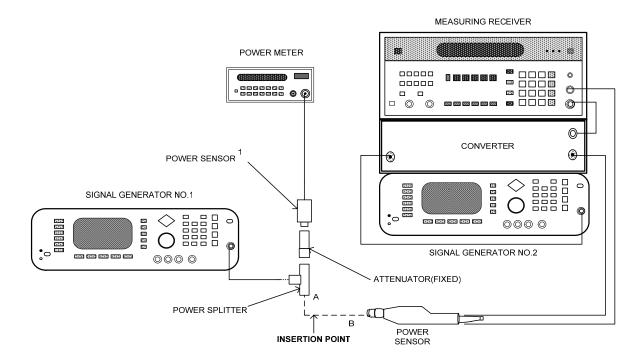
When performing the following steps if TI frequency range is above and below 1.3 GHz it will be necessary to perform two separate tests - one below and one above 1.3 GHz.

- (1) Zero and calibrate power meter and measuring receiver RF power.
- (2) Connect equipment as shown in figure 7 (Connect POINT A to POINT B). Determine and record in table E-1 a minimum of 10 evenly spaced test frequencies over the entire TI frequency range.
- (3) Adjust signal generator No. 1 frequency controls to test frequency recorded in table E1 and adjust signal generator No. 1 **RF OUTPUT** controls for +6 dBm.

NOTE

Use adapters as needed.

(4) Press **4.0 SPCL** keys and, if the **AUTO TUNING** indicator light is off, press the measuring receiver **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys.


NOTE

For frequencies below 1.3 GHz proceed to step (8).

NOTE

For frequencies 1.3 GHz and above, proceed to step (5) below. For frequencies above 1.3 GHZ, the offset frequency should be 120.53 MHz above that of signal generator No. 1.

- (5) Enter the test frequency into the measuring receiver and press the **MHz** key.
- (6) Calculate and record the proper offset frequency and record it as the Offset Frequency in table E1 alongside the appropriate test frequency. Set signal generator No. 2 to produce a +8 dB output at offset frequency.

¹ For frequencies below 50 MHz use power sensor 8482A and a 10 dB attenuator and for frequencies above 50 MHz use power sensor 8485D and a 30 dB attenuator.

Figure 7. Alternate Equipment Setup (10 MHz to 18 GHz).

Table E1

Test frequency	Offset frequency	Power meter reading	Init dB reading	First cal point	Second cal point	First RF cal fac (%)	Second RF cal fac (%)	Set ref cal fac (%)
requeriey	requeriey	reading	up redding	cui point	car point	(70)	(70)	(70)

- (7) Press measuring receiver **27.3 SPCL** keys, enter the offset frequency from table E1, and press the **MHz** key.
- (8) Press the GOLD (S) TUNED RF LEVEL, 39.9, SPCL, 3.7 SPCL, and 1.9 SPCL keys then press the LOG/LIN key for dBm units.
- (9) Note the power meter reading and record it as power meter reading in table E1 alongside the appropriate test frequency.
- (10) Note the measuring receiver reading and record it as Init dB reading in table E1 alongside the appropriate test frequency.
 - (11) Press the TI BLUE (SHIFT) key, then the SET REF (ZERO) key.
- (12) Calculate the first cal point using the formula -40 + signal generator No. 1 (No.2) output level Init dB reading. (Example -40 dBm + (6 dBm) (-1 dBm) = -33 dBm). Record this value, as first cal point in table B1 alongside the appropriate test frequency.
- (13) Set signal generator No. 1 to the level calculated in (12) above and press the **CALIBRATE** key.
- (14) Calculate the second cal point using the formula -80 + signal generator No. 1 output level -40 dBm to result of step (12). (Example -80 dBm + (6 dBm) (-1 dBm) = -73 dBm). Record this value, as second cal point in table E1 alongside the appropriate test frequency.
- (15) Set signal generator No. 1 to the level calculated in (14) above and press the **CALIBRATE** key.
 - (16) Set signal generator No. 1 to the initial level of +6 dBm.
- (17) Press **38.2** and **SPCL** keys and record the displayed value as First RF cal fac in table E1 alongside the appropriate test frequency.
- (18) Press **38.3** and **SPCL** keys and record the displayed value as Second RF cal fac in table E1 alongside the appropriate test frequency.
- (19) Press **38.4** and **SPCL** keys and record the displayed value as Set Ref cal fac in table E1 alongside the appropriate test frequency.
 - (20) Repeat steps (3) through (19) for each of the test frequencies in table E1.
 - (21) Press the FREQ and BLUE (SHIFT) AUTO TUNING keys.
 - (22) Set signal generator No. 1 to appropriate test frequency listed in table E1.
 - (23) Press the GOLD(S) TUNED RF LEVEL, 26.1 and SPCL keys.

NOTE

For frequencies below 1.3 GHz proceed to step (26) below.

- (24) Press **27.3 SPCL**, enter the appropriate offset frequency from table B1, and press the **MHz** key. (Ignore the displayed frequency reading.)
- (25) Set signal generator No. 2 for an output of +8 dBm and the appropriate offset frequency from table E1.
 - (26) Connect TI into figure 7 equipment setup as listed in (a) through (d) below:

- (a) **INPUT PORT** to POINT A.
- (b) **SIDEARM PORT** to POINT B.
- (c) **OUTPUT PORT** to 50Ω termination.
- (d) AUX (TEST) SIDE ARM PORT (if any) to 50 Ω termination.
- (27) Adjust signal generator No. 1 for a power meter indication as recorded in table E1 as Power meter reading.
- (28) Press **39.2 SPCL** and enter the First RF Cal Fac from table E1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (29) Press **39.3 SPCL** and enter the Second RF Cal Fac from table E1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (30) Press **39.4 SPCL**, enter the Set ref cal fac from table E1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (31) Record measuring receiver indication. Measuring Receiver indication will be within the nominal coupling value ± (coupling variation) + (± frequency sensitivity) tolerances listed for TI in Appendix A.
- (32) Repeat steps (21) through (25) and (27) through (31) above for remaining test frequencies recorded in table E1.
 - (33) Repeat steps (21) through (30). Replace step (26) with the following:

Connect TI into figure 7 equipment setup as listed in (a) through (d) below:

- (a) **OUTPUT PORT** to POINT A.
- (b) **SIDEARM PORT** to POINT B.
- (c) **INPUT PORT** to 50Ω termination.
- (d) AUX (TEST) SIDEARM PORT (if any) to 50Ω termination.
- (34) Record measuring receiver indication. Measuring receiver indication will be greater than or equal to the value listed in TI directivity column, Appendix A.
- (35) Repeat steps (21) through (25) and (27) through (30). Measuring receiver indication will be greater than or equal to the value listed in TI directivity column, Appendix A.
- **b. Adjustment.** No adjustments can be made; however, a correction chart may be prepared listing actual coupling and directivity values at test frequencies.

NOTE

When determining directivity, in- or out-of-tolerance condition, all of the below must be considered:

- 1. Termination mismatch errors can cause measured directivity to appear slightly lower than normal.
- 2. A 10 percent variation in directivity is acceptable for most directional couplers used in direct support of field activities in the U. S. Army.
- 3. A directional coupler may be out of tolerance at a specific frequency and still be useable over the rest of its range.

2. Final Procedure

- a. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

APPENDIX F ALTERNATE CALIBRATION PROCESS FOR VSWR BRIDGES (10MHZ TO 18GHZ)

NOTE

Software package USATA PD-MAT () can be used in place of steps 1 a (1) through 1 a (36) below, verifying that the TI meets or exceeds accuracies listed in Appendix B. Copies of the software package are available from Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-TMD-LW, Redstone Arsenal, AL 35898-5000.

1. Alternate Calibration Process for VSWR Bridges (10 MHz to 18 GHz)

a. Performance Check

NOTE

When performing the following steps, if TI frequency range above and below 1.3 GHz, it will be necessary to perform two separate tests - one below and one above 1.3 GHz.

- (1) Zero and calibrate power meter and measuring receiver RF power. Connect TI as shown in figure 7, Appendix E.
- (2) Determine and record in Table F-1 a minimum of 10 evenly spaced test frequencies over the entire TI frequency range. Connect N-Short to TI **DEVICE UNDER TEST** port.
- (3) Adjust signal generator No. 1 frequency controls to test frequency recorded in table F1 and adjust signal generator No. 1 **RF OUTPUT** controls for +6 dBm.

NOTE

Use adapters as needed.

(4) Press **4.0 SPCL** keys and, if the **AUTO TUNING** indicator light is off, press the measuring receiver **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys.

NOTE

For frequencies below 1.3 GHz proceed to step (8).

NOTE

For frequencies 1.3 GHz and above, proceed to step (5) below. For frequencies above 1.3 GHZ, the offset frequency should be 120.53 MHz above that of signal generator No. 1.

(5) Enter the test frequency into the measuring receiver and press the **MHz** key.

(6) Calculate and record the proper offset frequency and record it as the Offset frequency in table F1 alongside the appropriate test frequency. Set signal generator No. 2 to produce a +8 dB output at offset frequency.

Table F1

		Power		Tubic I I		First RF	Second RF	Set ref cal
Test	Offset	meter	Init	First	Second	cal fac	cal fac	fac
frequency	frequency	reading	dB reading	cal point	cal point	(%)	(%)	(%)
requericy	riequency	reading	ub reading	cai point	cai point	(70)	(70)	(70)

- (7) Press measuring receiver **27.3 SPCL** keys, enter the offset frequency from table F1, and press the **MHz** key.
- (8) Press the GOLD (S) TUNED RF LEVEL, 39.9, SPCL, 3.7 SPCL, and 1.9 SPCL keys then press the LOG/LIN key for dBm units.
- (9) Note the power meter reading and record it as Power meter reading in table F1 alongside the appropriate test frequency.
- (10) Note the measuring receiver reading and record it as Init dB reading in table F1 alongside the appropriate test frequency.
 - (11) Press the TI BLUE (SHIFT) key, then the SET REF (ZERO) key.
- (12) Calculate the first cal point using the formula -40 + signal generator No. 1 output level Init dB reading. (Example -40 dBm + (6 dBm) (-1 dBm) = -33 dBm). Record this value, as First cal point in table F1 alongside the appropriate test frequency.
- (13) Set signal generator No. 1 to the level calculated in (12) above and press the **CALIBRATE** key.
- (14) Calculate the second cal point using the formula -80 + signal generator No. 1 output level -40 dBm to result of step (12). (Example -80 dBm + (6 dBm) (-1 dBm) = -73 dBm). Record this value, as Second cal point in table F1 alongside the appropriate test frequency.

- (15) Set signal generator No. 1 to the level calculated in (14) above and press the **CALIBRATE** key.
 - (16) Set signal generator No. 1 to the initial level of +6 dBm.
- (17) Press **38.2** and **SPCL** keys and record the displayed value as First RF cal fac in table F1 alongside the appropriate test frequency.
- (18) Press **38.3** and **SPCL** keys and record the displayed value as Second RF cal fac in table F1 alongside the appropriate test frequency.
- (19) Press **38.4** and **SPCL** keys and record the displayed value as Set RF cal fac in table F1 alongside the appropriate test frequency.
 - (20) Repeat steps (3) through (19) for each of the test frequencies in table F1.
 - (21) Press the FREQ and BLUE (SHIFT) AUTO TUNING keys.
 - (22) Set signal generator No. 1 to appropriate test frequency listed in table F1.
 - (23) Press the GOLD(S) TUNED RF LEVEL, 26.1 and SPCL keys.

NOTE

For frequencies below 1.3 GHz proceed to step (26) below.

- (24) Press **27.3 SPCL**, enter the appropriate offset frequency from table F1, and press the **MHz** key. (Ignore the displayed frequency reading.)
- (25) Set signal generator No. 2 for an output of +8 dBm and the appropriate offset frequency from table F1.
 - (26) Remove N-short from TI.
 - (27) Connect mismatch as listed in table F2 to TI **DEVICE UNDER TEST** port.
- (28) Adjust signal generator No. 1 for a power meter indication as recorded in table F1 as Power meter reading.
- (29) Press **39.2 SPCL** and enter the First RF cal fac from table F1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (30) Press **39.3 SPCL** and enter the Second RF cal fac from table F1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (31) Press **39.4 SPCL**, enter the Set Ref cal fac from table F1 for the appropriate frequency, and press the **BLUE** (SHIFT) % CAL FACTOR (MHz) keys.
 - (32) Record measuring receiver indication in table F2.

Table F2. Return Loss Measurements (with N-Short)

Test frequency	Mismatch 2334-001-1	Mismatch 2334-001-2	Mismatch 2334-001-3	Mismatch 2334-001-4

- (33) Repeat steps (21) through (25) and (27) through (32) with remaining mismatches.
- (34) Repeat steps (3) through (31). Note: Initial reference will be run with $\bf DEVICE\ UNDER\ TEST$ port open.
 - (35) Record Measuring Receiver indication in table F3.

Table F3. Return Loss Measurements (without N-Short)

			· ·	· · · · · · · · · · · · · · · · · · ·
Test frequency	Mismatch 2334-001-1	Mismatch 2334-001-2	Mismatch 2334-001-3	Mismatch 2334-001-4

(36) Add readings from table F2 and table F3 then divide by 2. Return loss in dB indication will be within the limits specified in table 2 (for secondary reference as stated in test report plus or minus specifications of SWR bridges).

2. Final Procedure

- a. Deenergize and disconnect all equipment and reinstall protective cover on TI.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

APPENDIX G ALTERNATE CALIBRATION PROCESS FOR COAXIAL CIRCULATORS (10MHZ TO 18GHZ)

NOTE

Software package USATA PD-MAT () can be used in place of steps 1 a (1) through 1 a (35) below, verifying that the TI meets or exceeds accuracies listed in Appendix C. Copies of the software package are available from Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-TMD-LW, Redstone Arsenal, AL 35898-5000.

1. Alternate Calibration Process for Coaxial Circulators

a. Performance Check

- (1) Zero and calibrate power meter and measuring receiver RF power, then connect equipment as shown in figure 7, Appendix E (Connect POINT A to POINT B).
- (2) Adjust signal generator No. 1 to 0.960 Ghz and ${\bf RF}$ OUTPUT controls for +6 dBm.
- (3) Press **4.0 SPCL** keys and if the **AUTO TUNING** indicator light is off press the measuring receiver **FREQ** and **BLUE(SHIFT) AUTO TUNING** keys.
- (4) Press the GOLD (S) TUNED RF LEVEL, 39.9, SPCL, 3.7 SPCL, and 1.9 SPCL keys then press the LOG/LIN key for dBm units.

Table G1

Test Frequency GHz	Power meter reading	Init dB reading	First cal point	Second cal point	First RF cal fac	Second RF cal fac	Set ref cal fac (%)
0.960	reading		cai point	cai point	(%)	(%)	(70)
1.000							
1.030							
1.060							
1.090							
1.100							

- (5) Note the power meter reading and record it as Power meter reading in table G1 alongside the appropriate test frequency.
- (6) Note the measuring receiver reading and record it as Init dB reading in table G1 alongside the appropriate test frequency.
 - (7) Press the TI BLUE (SHIFT) key, then the SET REF (ZERO) key.

- (8) Calculate the first cal point using the formula -40 + signal generator No. 1 (No.2) output level Init dB reading. (Example -40 dBm + (6 dBm) (-1 dBm) = -33 dBm). Record this value, as First cal point in table G1 alongside the appropriate test frequency.
- (9) Set signal generator No. 1 to the level calculated in (8) above and press the **CALIBRATE** key.
- (10) Calculate the second cal point using the formula -80 + signal generator No. 1 output level -40 dBm to result of step (8). (Example -80 dBm + (6 dBm) (-1 dBm) = -73 dBm). Record this value, as Second cal point in table G1 alongside the appropriate test frequency.
- (11) Set signal generator No. 1 to the level calculated in (10) above and press the **CALIBRATE** key.
 - (12) Set signal generator No. 1 to the initial level of +6 dBm.
- (13) Press **38.2** and **SPCL** keys and record the displayed value as First RF cal fac in table G1 alongside the appropriate test frequency.
- (14) Press **38.3** and **SPCL** keys and record the displayed value as Second RF cal fac in table G1 alongside the appropriate test frequency.
- (15) Press **38.4** and **SPCL** keys and record the displayed value as Set ref cal fac in table G1 alongside the appropriate test frequency.
 - (16) Repeat steps (3) through (15) for each of the test frequencies in table G1.
 - (17) Press the FREQ and BLUE (SHIFT) AUTO TUNING keys.
 - (18) Set signal generator No. 1 to appropriate test frequency listed in table G1.
 - (19) Press the GOLD(S) TUNED RF LEVEL, 26.1 and SPCL keys.
 - (20) Connect TI into figure 7 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **SIDEARM PORT** to POINT B.
 - (c) **OUTPUT PORT** to 50Ω termination.
- (21) Adjust signal generator No. 1 for a power meter indication as recorded in table G1 as Power meter reading.
- (22) Press **39.2 SPCL** and enter the First RF cal fac from table G1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (23) Press **39.3 SPCL** and enter the Second RF cal fac from table G1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (24) Press **39.4 SPCL**, enter the Set ref cal fac from table G1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
 - (25) Measuring receiver indication will be 0.5 dB or less.
 - (26) Repeat steps (17) through (24) but replace step (20) with the following:

Connect TI into figure 7 equipment setup as listed in (a) through (c) below:

- (a) **OUTPUT PORT** to POINT A.
- (b) **INPUT PORT** to POINT B.
- (c) **SIDE PORT** to 50Ω termination.
- (27) Measuring receiver indication will be 20 dB or greater.
- (28) Repeat steps (17) through (24) but replace step (20) with the following: Connect TI into figure 7 equipment setup as listed in (a) through (c) below:
 - (a) **OUTPUT PORT** to POINT A.
 - (b) **SIDE PORT** to POINT B.
 - (c) **INPUT PORT** to 50Ω termination.
- (29) Measuring receiver indication will be 0.5 dB or less.
- (30) Repeat steps (17) through (24) but replace step (20) with the following: Connect TI into figure 7 equipment setup as listed in (a) through (c) below:
 - (a) **SIDE PORT** to POINT A.
 - (b) **OUTPUT PORT** to POINT B.
 - (c) **INPUT PORT** to 50Ω termination.
- (31) Measuring receiver indication will be 20 dB or greater.
- (32) Repeat steps (17) through (24) but replace step (20) with the following: Connect TI into figure 7 equipment setup as listed in (a) through (c below:
 - (a) **SIDE PORT** to POINT A.
 - (b) **INPUT PORT** to POINT B.
 - (c) **OUTPUT PORT** to 50Ω termination.
- (33) Measuring receiver indication will be 0.5 dB or less.
- (34) Repeat steps (17) through (24) but replace step (20) with the following: Connect TI into figure 7 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT** to POINT A.
 - (b) **SIDE PORT** to POINT B.

- (c) **OUTPUT PORT** to 50Ω termination.
- (35) Measuring Receiver indication will be 20 dB or greater.
- **b.** Adjustment. No adjustments can be made.

2. Final Procedure

- a. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

APPENDIX H ALTERNATE CALIBRATION PROCESS FOR POWER SPLITTERS AND POWER DIVIDERS (10MHZ TO 18GHZ)

NOTE

Software package USATA PD-MAT () can be used in place of steps 1 a (1) through 1 a (35) below, verifying that the TI meets or exceeds accuracies listed in Appendix D. Copies of the software package are available from Commander, U. S. Army Aviation and Missile Command, ATTN: AMSAM-TMD-LW, Redstone Arsenal, AL 35898-5000.

1. Alternate Calibration Process for Power Splitters and Power Dividers (10 MHz to 18 GHz)

a. Performance Check

NOTE

When performing the following steps, if TI frequency range above and below 1.3 GHz, it will be necessary to perform two separate tests - one below and one above 1.3 GHz.

- (1) Zero and calibrate power meter and measuring receiver RF power, then connect equipment as shown in figure 7 (Connect POINT A to POINT B).
- (2) Adjust signal generator No. 1 frequency controls to 10 MHz and **RF OUTPUT** controls for +6 dBm.
- (3) Press **4.0 SPCL** keys and, if the **AUTO TUNING** indicator light is off, press the measuring receiver **FREQ** and **BLUE** (**SHIFT**) **AUTO TUNING** keys.

NOTE

For frequencies below 1.3 GHz proceed to step (7) below.

NOTE

For frequencies 1.3 GHz and above, proceed to step (4) below. For frequencies above 1.3 GHZ, the offset frequency should be 120.53 MHz above that of signal generator No. 1.

- (4) Enter the test frequency into the measuring receiver and press the **MHz** key.
- (5) Calculate and record the proper offset frequency and record it as the Offset frequency in table H1 alongside the appropriate test frequency. Set signal generator No. 2 to produce a +8 dB output at offset frequency.

Table H1

		Power	Init	Table H1		First RF	Second RF	Set ref cal
Test	Offset	meter	dB reading	First	Second	cal fac	cal fac	fac
frequency	frequency	reading		cal point	cal point	(%)	(%)	(%)
0.010								
0.050								
0.100								
0.280								
0.460								
0.640								
0.820								
1.000								
1.180								
1.360								
1.540								
1.720								
1.900								
2.000								
2.500								
3.000								
3.500								
4.000								
4.500								
5.000								
5.500								
6.000								
6.500								
7.000								
7.500								
8.000								
8.500								
9.000								
9.500								
10.000								
10.500								
11.000								
11.500								
12.000								
12.500								
13.000								
13.500								
14.000								

Table H1 - Continued							
14.500							
15.000							
15.500							
16.000							
16.500							
17.000							
17.500							
18.000							

Table H1 - Continued

- (6) Press measuring receiver **27.3 SPCL** keys, enter the offset frequency from table H1, and press the **MHz** key.
- (7) Press the GOLD (S) TUNED RF LEVEL, 39.9, SPCL, 3.7 SPCL, and 1.9 SPCL keys then press the LOG/LIN key for dBm units.
- (8) Note the power meter reading and record it as Power meter reading in table H1 alongside the appropriate test frequency.
- (9) Note the measuring receiver reading and record it as Init dB reading in table H1 alongside the appropriate test frequency.
 - (10) Press the TI BLUE (SHIFT) key, then the SET REF (ZERO) key.
- (11) Calculate the first cal point using the formula -40 + signal generator No.1 (No.2) output level Init dB reading. (Example -40 dBm + (6 dBm) (-1 dBm) = -33 dBm). Record this value, as First cal point in table H1 alongside the appropriate test frequency.
- (12) Set signal generator No. 1 to the level calculated in (12) above and press the **CALIBRATE** key.
- (13) Calculate the second cal point using the formula -80 + signal generator No. 1 output level -40 dBm to result of step (12). (Example -80 dBm + (6 dBm) (-1 dBm) = -73 dBm). Record this value, as Second cal point in table H1 alongside the appropriate test frequency.
- (14) Set signal generator No. 1 to the level calculated in (14) above and press the **CALIBRATE** key.
 - (15) Set signal generator No. 1 to the initial level of +6 dBm.
- (16) Press **38.2** and **SPCL** keys and record the displayed value as First RF cal fac in table H1 alongside the appropriate test frequency.
- (17) Press **38.3** and **SPCL** keys and record the displayed value as Second RF cal fac in table H1 alongside the appropriate test frequency.
- (18) Press **38.4** and **SPCL** keys and record the displayed value as Set ref cal fac in table H1 alongside the appropriate test frequency.
 - (19) Repeat steps (3) through (18) for each of the test frequencies in table H1.
 - (20) Press the FREQ and BLUE (SHIFT) AUTO TUNING keys.

- (21) Set signal generator No. 1 to appropriate test frequency listed in table H1.
- (22) Press the GOLD(S) TUNED RF LEVEL, 26.1 and SPCL keys.

NOTE

For frequencies below 1.3 GHz proceed to step (25) below.

- (23) Press **27.3 SPCL**, enter the appropriate offset frequency from table H1, and press the **MHz** key. (Ignore the displayed frequency reading.)
- (24) Set signal generator No. 2 for an output of +8 dBm and the appropriate offset frequency from table H1.
 - (25) Connect TI into figure 7 equipment setup as listed in (a) through (c) below:
 - (a) **INPUT PORT 1** to POINT A.
 - (b) **OUTPUT PORT 2** to POINT B.
 - (c) **OUTPUT PORT 3** to 50 Ω termination.
- (26) Adjust signal generator No. 1 for a power meter indication as recorded in table H1 as Power meter reading.
- (27) Press **39.2 SPCL** and enter the First RF cal fac from table H1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (28) Press **39.3 SPCL** and enter the Second RF cal fac from table H1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (29) Press **39.4 SPCL**, enter the Set ref cal fac from table H1 for the appropriate frequency, and press the **BLUE** (**SHIFT**) % **CAL FACTOR** (**MHz**) keys.
- (30) Record measuring receiver indication in insertion loss for **OUTPUT PORT 2** column in table H2. Insertion loss will be equal to or less than the limits listed in Appendix D.

Table H2. Insertion Loss - Output Port Tracking (10MHz to 18 GHz)

	Receiver syst Insert	OUTPUT	
Test	OUTPUT	OUTPUT	PORT
Frequency	PORT 2	PORT 3	TRACKING
(GHz)	(dB)	(dB)	(dB)
0.010			
0.050			
0.100			
0.280			
0.460			
0.640			
0.820			
1.000			
1.180			
1.360			

Table H2. Insertion Loss - Output Port Tracking (10MHz to 18 GHz) - Continued

	Receiver syst Inserti	OUTPUT	
Test	OUTPUT	OUTPUT	PORT
Frequency	PORT 2	PORT 3	TRACKING
(GHz)	(dB)	(dB)	(dB)
(GIIZ)	(ub)	(ub)	(ub)
1.540			
1.720			
1.900			
2.000			
2.500			
3.000			
3.500			
4.000			
4.500			
5.000			
5.500			
6.000			
6.500			
7.000			
7.500			
8.000			
8.500			
9.000			
9.500			
10.000			
10.500			
11.000			
11.500			
12.000			
12.500			
13.000			
13.500			
14.000			
14.500			
15.000			
15.500			
16.000			
16.500			
17.000			
17.500			
18.000			

⁽³¹⁾Repeat steps (20) through (24) and (26) through (30) for remaining frequencies in table H1.

(32) Repeat steps (21) through (30). Replace step (25) with the following:

Connect TI into figure 7 equipment setup as listed in (a) through (c) below:

- (a) **INPUT PORT 1** to POINT A.
- (b) **OUTPUT PORT 2** to 50Ω termination.
- (c) **OUTPUT PORT 3** to POINT B.
- (33) Record measuring receiver indication in insertion loss for **OUTPUT PORT 3** column in table H2. Insertion loss will be equal to or less than the limits listed in Appendix D.
- (34) Repeat steps (20) through (24) and (26) through (30) for remaining frequencies in Table H1. Record measuring receiver indication in insertion loss for **OUTPUT PORT 3** column in table H2. Insertion loss will be equal to or less than the limits listed in Appendix D.
- (35) Algebraically calculate the difference between the values recorded for **OUTPUT PORT 2** and **OUTPUT PORT 3** in table H2. Record results in **OUTPUT PORT TRACKING** column in table H2. Output port tracking will be within the limits specified in Appendix D.
 - **b.** Adjustment. Prepare a chart (if required) similar to table H2 for TI frequency range.

2. Final Procedure

- a. Deenergize and disconnect all equipment.
- **b**. Annotate and affix DA label/form in accordance with TB 750-25.

By Order of the Secretary of the

PETER J. SCHOOMAKER General, United States Army Chief of Staff

Official

JOYCE E. MORROW
Administrative Assistant to the
Secretary of the Army

0605905

Distribution:

To be distributed in accordance with the initial distribution number (IDN) 342085, requirements for calibration procedure TB 9-5985-314-35.

Instructions for Submitting an Electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@redstone.army.mil

To: <2028@redstone.army.mil

Subject: DA Form 2028 1. From: Joe Smith

2. Unit: home

3. Address: 4300 Park 4. City: Hometown

5. **St**: MO 6. **Zip**: 77777

7. **Date Sent**: 19-OCT -93 8. **Pub no:** 55-2840-229-23

9. Pub Title: TM

10. Publication Date: 04-JUL-85

11. Change Number: 7 12. Submitter Rank: MSG 13. Submitter FName: Joe 14. Submitter MName: T

15. Submitter LName: Smith

16. Submitter Phone: 123-123-1234

17. **Problem**: 1 18. Page: 2 19. Paragraph: 3

20. Line: 4 21. NSN: 5 22. Reference: 6 23. Figure: 7

24. Table: 8 25. Item: 9 26. Total: 123 27. Text

This is the text for the problem below line 27.

PIN: 048800-000